
1

CSE3221.3 Operating System Fundamentals
Prof. Hui Jiang

Dept of Computer Science and Engineering

York University

No.9Memory Management (2) Memory Management Approaches
• Contiguous Memory Allocation

• Paging

• Segmentation

• Segmentation with paging

Contiguous Memory Allocation suffers serious extern al fragmentationPaging(1)
• Each page is independently

mapped to (or physically
supported by) one frame.

• User program sees a contiguous
logical space.

• But the supporting frames are
scattered in physical memory.

• Paging is dynamical relocation.

• The mapping is automatically
done by hardware or OS based
on a page table .

Logical address Logical space

Page 0

Page 1

Page 2

Page 3

Page 4

Page 5

Page 6

000
001

201
202

Frame 0

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

Frame 6

Frame 7

Frame 8

Frame 9

Frame 10

Frame 11

Frame 12

Physical Memory

• Logical space is contiguous and consists of pages
• Physical space is broken into frames
• Page size = Frame size

Paging Example(1)

2

Address Translation Architecture
•• pp is used to index page

table to find frame
number or base
physical address of this
page

•• dd is the offset in the
mapped frame

• The physical address Y:
Y = f *k + d

(f is frame number)

• Convert logical address into page # and offset :

Logical address (X) = page number (pp) + page offset (dd)

• Assume page size k:

p = X/k (quotient)

d = X%k (remainder)

Translation of logical address(for binary address)
• Page size (frame size) is typical a power of 2. (512k – 16M).

• Logical address is a concatenated bit stream of pag e number
and page offset.

• An example: 1) logical space is 2**m: logical address is m bits.

2) page size is 2**n: page offset is n bits.

3) a logical space needs at most 2**(m-n) pages:
page table contains at most 2**(m-n) elements

page number needs (m-n) bits to index page table

page number page offset

pp dd

m-n bits n bits

Given a binary logical address, the last n bits is page offset
and the first m-n bits is page number. Paging Example(2)

• Physical memory: 32-byte (2**5).

• Logical memory: 16-byte (2**4).

• Page size: 4-byte (2**2).

• Logical memory needs up to 4
pages: 4 entries in page table.

• m=4, n=2.

page 0

page 1

page 2

page 3

Logical address 9 : 1 0 0 1

frame 0

frame 1

frame 2

frame 3

frame 4

frame 5

frame 6

frame 7

Paging (2)
• No external fragmentation in paging.

• Internal fragmentation: process size does not happen to fall on
page boundaries.

– Average one-half page per process.

• How to choose page size:

– Smaller page size:

• less internal fragmentation.

• large page table (more overhead).

– Typical 4K—8KB

• If each page table entry is 4 bytes long, it can po int to one of 2**32
frames

– Maximal physical address: frame size * (2**32)

(from this we can deduce bit number in physical add ress)

3

Paging (3): memory allocation
• OS keeps track of all free frames.

• To run a program of size n pages, OS needs to find n free frames and load program.

• OS sets up a page table to translate logical to physical addresses.

• Each process has its page table and saved in memory pointed by its PCB.

Paging(4)
• OS maintains a frame table:

– One entry for each physical frame in memory.

– To indicate the frame is free or allocated, if allocated, to which
page of which process(es).

• OS maintain a copy of page table for each process in memory,
pointed by PCB of this process.

– Used to translate logical address in a process’ address space
into physical address.

– Example: one process make an I/O system call and provide an
address as parameter (logical address in user space). OS must
use its page-table to produce the correct physical address.

• In context switch, the saved page-table is loaded by CPU dispatch
to hardware page table for every memory reference. (copying page
table increases context switch time)Paging hardware

• For small page-table (<256 entries): using registers

• For large page-table: using two indexing registers

– page table is kept in main memory.

– page-table base register (PTBR) points to the page
table.

– page-table length register (PRLR) indicates size of the
page table.

– In this scheme every data/instruction access requires
two memory accesses. One for the page table and one
for the data/instruction.

Paging hardware: TLB
• Caching: using of a special fast-lookup hardware cache called

associative registers or translation look-aside buffers (TLBs)

– Associative registers (expensive) – parallel search

– speedup translation from page # � frame # :

Assume page number is A:

-- If A is in associative register, get frame # out. (hit)

-- Otherwise get frame # from page table in memory (miss)

Save to TLB for next reference, replace an old if full

Page # Frame #

4

Paging hardware with TLB
Need to flush TLB’s in context switch

Effective Access Time of paging after TLB
• Assume memory cycle time is a time unit.
• One TLB Lookup = b time unit.
• Hit ration – percentage of times that a page number is found in

the associative registers; ration related to number of associative
registers.

• Hit ratio = αααα.
• Effective Access Time (EAT):

EAT = (a + b) αααα + (2a + b)(1 – αααα)
= (2 - αααα)a + b

Example: a = 100 nanoseconds, b = 20 nanosecond.

If αααα = 0.80, EAT = 140 nanoseconds (40% slower).
If αααα = 0.98, EAT = 122 nanoseconds (22% slower).Memory Protection in paging

• Memory is protected among different processes.
• In paging, other process’ memory space is protected automatically.
• Memory protection implemented by associating protection bits with

each frame in page table
– One bit for read-only or read-write
– One bit for execute-only
– One Valid-invalid bit

• “valid” indicates that the associated page is in the process’
logical address space, and is thus a legal page.

• “invalid” indicates that the page is not in the process’ logical
address space.

• Use page-table length register (PTLR): to indicate the size of
page table

• Valid-invalid bit is mainly used for virtual memory
• In every memory reference, the protection bits are checked. Any

invalid access will cause a trap into OS.

Example:

--14-bit address
-- page size 2KB
-- valid space

0-16383

5

Hierarchical Paging(multilevel paging)
• In modern computer, we

require a large logical-
address space, which
results in some huge
page table.

• No contiguous memory
space for the large page
table.

• Hierarchical paging:
using paging technique
to divide the large page
table into smaller pieces

Address-Translation in two-level paging
• Logical address 32-bit, page size 4K, maximal physical address 2**32 frames

• A logical address is divided into 20 bits page number and 12 bits page offset.

• Since page-table is paged, the logical address is as follows:

where pi is an index into the outer page table, and p2 is the displacement within
the page of the outer page table.

page number page offset

pi p2 d
10 10 12

4-byte

4-byte

4-byteMultilevel Paging and Performance
• 64-bit logical address may require 4-level paging

• Since each level is stored as a separate table in memory, converting a
logical address to a physical one may take four memory accesses.

• Even though time needed for one memory access is quintupled, TBL-
based caching permits performance to remain reasonable.

• Cache hit rate of 98 percent yields:

effective access time = 0.98 x 120 + 0.02 x 520

= 128 nanoseconds.

which is only a 28 percent slowdown in memory access time.

• But the overhead is too high to maintain many page-tables

• For 64-bit, hierarchical page table is inappropriate.

Hashed Page Tables
Hash

Function

p d

q s p t

Logical address

t d

Hash Table

Physical
Memory

6

Inverted Page Table
• One entry for each real frame of memory.

• Each entry consists of the virtual page number stored in this frame, with
information about the process that owns that page.

• Only one table in the system: decreases memory needed to store page
tables.

• But increases time needed to search the table when a page reference
occurs.

• Use hash table to limit the search to one — or at most a few — page-
table entries.

– To speedup further, TLB is used.

Inverted Page Table Architecture
Shared Pages

• Different pages of several processes can be mapped to the same
frame to let them share memory.

• Shared code

– One copy of read-only (reentrant) code shared among
processes (i.e., text editors, compilers, window systems).

– Shared code must appear in same location in the logical
address space of all processes.

• Private code and data

– Each process keeps a separate copy of the code and data.

– The pages for the private code and data can appear anywhere
in the logical address space.

• Shared-memory for inter-process communication

• Inverted page table has problems in sharing pages

Shared Pages Example
shared

memory

physical memory

7

User’s view of a program
1

3

2

4

1

4

2

3

user space physical memory space

Segmentation
• A logical-address space is a collection of segments.

• Each segment has a name (segment number) and a length.

• A logical address consists of: a segment number and an offset.

<segment-number (s), offset (d)>

• Physical memory address is still one-dimension

• Translation from logical (2-D) into physical (1-D) is based on a
segment table .

• Including all segments in the system

• Each entry has a segment base and a segment limit.

• An array of base-limit pairs

• Segment-table base register (STBR) points to the segment table’s
location in memory.

• Segment-table length register (STLR) indicates number of segments
used by a program; segment number s is legal if s < STLR.Segment Hardware

logical address

Segmentation Example

8

Segment Protection
• Limit check for every memory reference.

• Each segment is a semantically defined portion of data. They
tend to be used in the same way. We can define protection bits
for every segment:

– Read-only, read-write, and so on.

– The segment hardware will check protection bits for each
memory reference.

Segment Sharing(1)
• Every process has

a segment table.
Segments are
shared when the
entries point to the
same physical
location.

• Sharing has to be at
the segment level.

Segment Sharing(2)
• How to share a code segment which has a direct address reference?

Jump <0,1000>

Data 1

Data 2

Code

Process 1:

s
0

1
1024

4096

5200

1024

base limit

2500

4096 300

<0,1000> � 1024+1000=2024

Process 2:

s
0

1

5200

base limit

200

1024 2500

<0,1000> � 5200+1000=6200

Incorrect reference

Segment Sharing(3)
• If processes share a code segment with the direct address

reference, all processes should have the same segment
number for this segment.

• The following segments can be shared freely:

– Read-only data segment

– Code segment with only indirect address reference (by
offset from the current position or segment beginning)

– Code segment with address relative to a register which
contains the current segment number.

9

Fragmentation
• No internal fragmentation

• External fragmentation

– Since segments have various size

– Dynamic storage-allocation problem

– Best-fit, first-fit,worst-fit

– External fragmentation depends on average segment size.

If the average segment size is small, external fragmentation
will also be small.

Segmentation with Paging
• Both segmentation and paging have advantages and

disadvantages. We can combine them to improve on each.

• Two most popular CPU’s, Motorola 68000 line and Intel 80x86
and Pentium uses a mixture of paging and segmentation.

• Example: Intel Pentium uses segmentation with paging for
memory management.

– Based on segmentation primarily.

– The varying-length segments are paged into a set of fixed-
sized pages.

80386’s addressing
• A process can have up to 16KB (2**14) segments, divided into two

segment tables:
– Local descriptor table (LDT)
– Global descriptor table (GDT)
– Each entry in the tables is 8 bytes (base+length+others).

• Each segment can be 4GB (2**32) in maximum.
• A logical address is 48 bits, consists of:

– 16 bits selector: 13-bit segment number, 1-bit indicate LDT or
GDT, 2-bit for protection.

– 32 bits segment offset: a segment can be up to 2**32 bytes
– Each segment is paged: page size 4KB & 2-level paging:

10-bit page directory # +10-bit page # + 12-bit page offset
• CPU has six segment registers (caches), allowing 6 segments to be

addressed at any time (avoid reading descriptor for each memory
reference.

Pentium Addressing Architecture
16 bit 32 bit

32 bit

10 bit 10 bit 12 bit

including base &
limit of the segment

10

Pentium Addressing Architecture Comparing Memory-Management Strategies
• Hardware support

• Performance

• Fragmentation

• Relocation

• Swapping

• Sharing

• Protection

(1)Contiguous allocation, (2)paging, (3)segmentatio n,
(4)Segmentation with paging

