Memory Management Approaches

CSE3221.3

Operating System Fundamentals) i
» Contiguous Memory Allocation

No.9 + Paging

Memory Management (2)

* Segmentation

* Segmentation with paging
Prof. Hui Jiang
Dept of Computer Science and Engineering

York University Contiguous Memory Allocation suffers serious extern al fragmentation

N -
Paging(1) Paging Example(1)
® Logical space is contiguous and consists of pages
® Physical space is broken into frames frambe
® Page size = Frame size number
Physical Memory
page 0
L. Logical address Logical space Frame 0
« Each page is independently 000) Rl R
mapped to (or physically oo Gancl) F—
supported by) one frame. H Page 1 s page 2
+ User program sees a contiguous;; Page 2 End page 3 e
logical space. . Page 3 Frame 5 :
+ Butthe supporting frames are Frame 6 il ., page 1
_pp g Page 4 memory “,
scattered in physical memory. Frame 7 .
. . . . Page 5 Y
« Paging is dynamical relocation. FE= @
o . Page 6 Frame 9 . 6
« The mapping is automatically p— DY
done by hardware or OS based 7| page s
on a page table . Frame 11
Frame 12 physical
memory

Address Translation Architecture

® Convert logical address into page # and offset :

Logical address (X) = page number (p) + page offset (d)
® Assume page size k:

p = X/k (quotient)

d = X%k (remainder)

 p s used o index page Gisd P
table to find frame 3
hysical
number or base cPu ([p [d] [1d zeyr:'g;
physical address of this
page
« disthe offsetin the {
p

mapped frame

® The physical address Y:
Y= f*k+d
(f is frame number)

f

page table

Paging Example(2)

0
frame 0

« Physical memory: 32-byte (2**5).
« Logical memory: 16-byte (2**4).
« Page size: 4-byte (2**2).

« Logical memory needs up to 4
pages: 4 entries in page table.

* m=4, n=2.

Zmel A

0535 3|—x0 -

o~ oo sfon o
- ~_ _|5e ~olaoow
N

page table

o

230

s
3

frame 3

16

frame 4
. 20 | a
n b
Logical address 9 : frame 5 c
2| e
frame 6 9
h

28
frame 7

nhusical maman,

Translation of logical address
(for binary address)

« Page size (frame size) is typical a power of 2. (512k — 16M).

« Logical address is a concatenated bit stream of pag e number
and page offset.

« An example: 1) logical space is 2**m: logical address is m bits.
2) page size is 2**n: page offset is n bits.

3) alogical space needs at most 2**(m-n) pages:
page table contains at most 2**(m-n) elements

page number needs (m-n) bits to index page table

page number page offset
| p d |
m-n bits n bits

Given a binary logical address, the last n bits is page offset
and the first m-n bits is page number.

Paging (2)

« No external fragmentation in paging.

< Internal fragmentation: process size does not happen to fall on
page boundaries.

— Average one-half page per process.
* How to choose page size:
— Smaller page size:
« less internal fragmentation.
« large page table (more overhead).
— Typical 4AK—8KB

« If each page table entry is 4 bytes long, it can po int to one of 2**32
frames

— Maximal physical address: frame size * (2**32)
(from this we can deduce bit number in physical add ress)

Paging (3): memory allocation
* OS keeps track of all free frames.
« To run a program of size n pages, OS needs to find n free frames and load program.
« OS sets up a page table to translate logical to physical addresses.
« Each process has its page table and saved in memory pointed by its PCB.

ree-frame list free-frame list
13 15 13 |page 1

14 14 |page 0

page 3
new process| 18

18 [page 2

20 |page 3

21 new-process page table 21

a (5)
e

Paging hardware

» For small page-table (<256 entries): using registers
» For large page-table: using two indexing registers
— page table is kept in main memory.

— page-table base register (PTBR) points to the page
table.

— page-table length register (PRLR) indicates size of the
page table.

— In this scheme every data/instruction access requires
two memory accesses. One for the page table and one
for the data/instruction.

Paging(4)

« OS maintains a frame table:
— One entry for each physical frame in memory.

— Toindicate the frame is free or allocated, if allocated, to which
page of which process(es).

« OS maintain a copy of page table for each process in memory,
pointed by PCB of this process.

— Used to translate logical address in a process’ address space
into physical address.

— Example: one process make an I/O system call and provide an
address as parameter (logical address in user space). OS must
use its page-table to produce the correct physical address.

« In context switch, the saved page-table is loaded by CPU dispatch
to hardware page table for every memory reference. (copying page
table increases context switch time)

Paging hardware: TLB

« Caching: using of a special fast-lookup hardware cache called
associative registers or translation look-aside buffers (TLBs)

— Associative registers (expensive) — parallel search
— speedup translation from page # - frame # :
Assume page number is A:
-- If Ais in associative register, get frame # out. (hit)
-- Otherwise get frame # from page table in memory (miss)
Save to TLB for next reference, replace an old if full

Page # Frame #

. . Effective Access Time of
Paging hardware with TLB paging after TLB

logical
address

Assume memory cycle time is a time unit.
One TLB Lookup = b time unit.
Hit ration — percentage of times that a page number is found in
the associative registers; ration related to number of associative
physical registers.
address R .
N} Hit ratio = a.
Effective Access Time (EAT):
EAT=(a+b)a+(2a+b)(1-a)
F’{ =(2-a)a+b
TLB miss

CPU

page frame
number number

TLB hit

TLB

e S Example: a = 100 nanoseconds, b = 20 nanosecond.

memory

page table If a=0.80, EAT =140 nanoseconds (40% slower).
Ifa=0.98, EAT =122 nanoseconds (22% slower).

Need to flush TLB's in context switch

Memory Protection in paging

« Memory is protected among different processes. . Example:
« In paging, other process’ memory space is protected automatically. --14-bit address
. tl\aﬂai:rﬂcf)rr; rﬁ;oitﬁti)tgc;neiggllzmented by associating protection bits with 00000 e mumber Jalidainvald bt 2 page:’ 5:'?; Ss‘;z; gKB
— One bit for read-only or read-write page 0 = 0-16383
— One bit for execute-only page ! 1 gy e
— One Valid-invalid bit page 2 § 5
« “valid” indicates that the associated page is in the process’ page 3 al8]v] 6
logical address space, and is thus a legal page. 5[0]v]
« “invalid” indicates that the page is not in the process’ logical page 4 601 7| page3
address space. 10468 page 5 7[o]i] 8| page 4
« Use page-table length register (PTLR): to indicate the size of 12,287 page table
page table o s
« Valid-invalid bit is mainly used for virtual memory .

< In every memory reference, the protection bits are checked. Any
invalid access will cause a trap into OS.

Hierarchical Paging
(multilevel paging)

0
« In modern computer, we —
require a large logical- :
address space, which [= 106,
: N
results in some huge B .
page table. T~ e

« No contiguous memory

500

space for the large page 7(')8
table. - —
708
« Hierarchical paging: —
. . pag g outer page ™ 929 900
using paging technique table .
to divide the large page : /><
table into smaller pieces 900 o
page of 929
page table
page table

memor:

Multilevel Paging and Performance

« 64-bit logical address may require 4-level paging
« Since each level is stored as a separate table in memory, converting a
logical address to a physical one may take four memory accesses.

Even though time needed for one memory access is quintupled, TBL-
based caching permits performance to remain reasonable.

« Cache hit rate of 98 percent yields:
effective access time = 0.98 x 120 + 0.02 x 520
= 128 nanoseconds.

which is only a 28 percent slowdown in memory access time.
® But the overhead is too high to maintain many page-tables
® For 64-bit, hierarchical page table is inappropriate.

Address-Translation in two-level paging

« Logical address 32-bit, page size 4K, maximal physical address 2**32 frames
« A logical address is divided into 20 bits page number and 12 bits page offset.

« Since page-table is paged, the logical address is as follows:
page number | page offset

‘ Py ‘ P, d
10 10 12

where p; is an index into the outer page table, and p, is the displacement within
the page of the outer page table.

logical address
o lnlo] e
—r
P, { 4-byte
—
P, { 4-byte
outer-page d
table {
page of
page table

Hashed Page Tables

Logical address
T

Physical
Memory

iy Jals | dlolc] 4v ...

Hash Table

P
Inverted Page Table Inverted Page Table Architecture
« One entry for each real frame of memory.
« Each entry consists of the virtual page number stored in this frame, with
information about the process that owns that page. ’
logical hvsical
address 2 dgf:sas
« Only one table in the system: decreases memory needed to store page cPu —{pid] p [d | [[@ physical
tables. emony,
« Butincreases time needed to search the table when a page reference
occurs. search l !
- pd[p
« Use hash table to limit the search to one — or at most a few — page-
table entries.
— To speedup further, TLB is used.
page table

Shared Pages Shared Pages Example

ed1 0
« Different pages of several processes can be mapped to the same
frame to let them share memory. ed2 1| datat
* Shared code ed3 2| data3
— One copy of read-only _(reentrant) _code shared among — page table A
processes (i.e., text editors, compilers, window systems). for P, ed 1
. . . . process P, 4 d 2
— Shared code must appear in same location in the logical ! o © ‘\ hared
address space of all processes. © 5 share
. memory
ed3
« Private code and data o| s L—
— Each process keeps a separate copy of the code and data. data2 | page table p
. for P, 7| data2
— The pages for the private code and data can appear anywhere ed1 process P, 2

in the logical address space.

« Shared-memory for inter-process communication

« Inverted page table has problems in sharing pages

data 3 page table
for Py
process Py h

i isical memo i

User’s view of a program

user space

physical memory space

Segment Hardware

s
— limit_[base
segment
table
s
Y
es
< U 70 >
no
\4
trap: addressing error physical memory

Segmentation

« Alogical-address space is a collection of segments.

« Each segment has a name (segment number) and a length.

« Alogical address consists of: a segment number and an offset.
<segment-number (s), offset (d)>

® Physical memory address is still one-dimension

® Translation from logical (2-D) into physical (1-D) is based on a
segment table .

¢ Including all segments in the system
« Each entry has a segment base and a segment limit.
* An array of base-limit pairs

« Segment-table base register (STBR) points to the segment table’s
location in memory.

« Segment-table length register (STLR) indicates number of segments
used by a program; segment number s is legal if s < STLR.

Segmentation Example
subroutine stack
1400
segment 3 segment 0|
] 2400
symbol
segment 0 table
limit | base
sqrt segment 4 0[1000 | 1400
1| 400 e300 | 3200
main 2| 400 | 4300
program 3| 1100 | 3200 segment 3
4[1000 | 4700
segment table 4300
segment 1 segment 2 segment 2
4700
logical address space 'segment 4|
5700
6300
lsegment 1
6700
hysical memon

P
. Segment Sharing(1)
Segment Protection
« Every process has P 5
o a segment table. i N\
« Limit check for every memory reference. Segments are / —_— \
« Each segment is a semantically defined portion of data. They shared when the
tend to be used in the same way. We can define protection bits entries point to the seert po—
. same physical \ imit_| b
for every segment: . ocat 0?1 Y \ a / u:izs"z"és -4335582 e
— Read-only, read-write, and so on. : segrent R ffab‘l"’
: : . « Sharing has to be at Dot s S eer,
— The segment hardware will check protection bits for each 9 " Piogess By 68348
th level & . data 1
e segment level. process P, o
memory reference. ! 72173
7 ;\\
/
/ \ 90003
editor datap
98553
‘segment 0
5 data2 / o physical memory
X segment 1 / 18850 | 90003
T gy
logical memory

process P,

Segment Sharing(2) Segment Sharing(3)

» How to share a code segment which has a direct address reference?

. 3 « If processes share a code segment with the direct address
Process 1: reference, all processes should have the same segment
B K3 number for this segment.
H base limit 5 . i .
is o T e } <0,1000> > 1024+1000=2024 The following segments can be shared freely:
1024] Code — Read-only data segment

— Code segment with only indirect address reference (by
offset from the current position or segment beginning)

— Code segment with address relative to a register which
contains the current segment number.

Jump <0,1000>

4096 .
Data 1 i s _base lmi <0,1000> = 5200+1000=6200
i O] s5200| 200
5200 K g
Data 2 s 1 1024 2500 &

Incorrect reference

Fragmentation

Segmentation with Paging

« No internal fragmentation « Both segmentation and paging have advantages and
« External fragmentation disadvantages. We can combine them to improve on each.

— Since segments have various size « Two most popular CPU’s, Motorola 68000 line and Intel 80x86
and Pentium uses a mixture of paging and segmentation.

« Example: Intel Pentium uses segmentation with paging for
memory management.

— Based on segmentation primarily.

— The varying-length segments are paged into a set of fixed-
sized pages.

— Dynamic storage-allocation problem
— Best-fit, first-fit,worst-fit
— External fragmentation depends on average segment size.

If the average segment size is small, external fragmentation
will also be small.

80386’s addressing Pentium Addressing Architecture

logical address ‘ selector offset ‘
« A process can have up to 16KB (2**14) segments, divided into two 16 bn 32 bit
segment tables:
descriptor lable
— Local descriptor table (LDT) .
— Global descriptor table (GDT) =
. . segrnem descriptor —><+
— Each entry in the tables is 8 bytes (base+length+others). —
« Each segment can be 4GB (2**32) in maximum. -
) i .) including base 32 bit
« Alogical address is 48 bits, consists of: limit of the segment .
. . o . " page frame
— 16 bits selector: 13-bit segment number, 1-bit indicate LDT or tinear adares: | Rel =S ‘ ars | E—
GDT, 2-bit for protection. 10]bit 10fbit 1Z| bit
— 32 bits segment offset: a segment can be up to 2**32 bytes IEEvEicalisddesy
— Each segment is paged: page size 4KB & 2-level paging: . Ao B
10-bit page directory # +10-bit page # + 12-bit page offset 1
» CPU has six segment registers (caches), allowing 6 segments to be Sirecion ey BassliEEIETeniTy
addressed at any time (avoid reading descriptor for each memory
reference.
" page directory | T T

= = =
Pentium Addressing Architecture
(logical address)
page directory n page table n offset i
31 22 21 l 1211 l 0
page 4-KB
table — page
page
directory
CR3 — 4+MB
register page
page directory ! offset |
31 22 21 0f

Comparing Memory-Management
Strategies

(1)Contiguous allocation, (2)paging, (3)segmentatio n,
(4)Segmentation with paging

» Hardware support
* Performance

» Fragmentation

* Relocation

* Swapping

» Sharing

* Protection

10

